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Abstract Complete matrix sums and inward products are employed within vector
spaces to define a generalized scalar product, searching at the same time for coherent
definitions with the related general order norms. The theoretical background developed
in this way permits to connect such mathematical constructs with quantum similarity
and QSPR.
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1 Introduction

Scalar products, also called inner or dot products, are well known in Hilbert and
pre-Hilbert spaces, see for example [1]. It will appear redundant to insist about their
definition and properties, for more information see, for instance, Ref. [18,20].

In addition, within the so-called vector semispaces, which are always defined over
the positive semi-definite real field, it has been already done some research on gen-
eralized scalar products, see Ref. [7], because the peculiarities of this kind of vector
collections allow an easy development of such kind of mathematical structures.

In the present work it is intended to do some more exploration of specific alterna-
tive definitions of the scalar product and its generalization as well. While doing so,
it is worthwhile to analyze the connection of such new structures with generalized
Minkowski norms as it has been previously done in Ref. [9].

Higher order scalar products are connected with the theoretical background of
molecular quantum similarity [6,4] and its application to quantum QSPR (QQSPR)
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[10]. Recent research has shown that classical QSPR discrete molecular description
can be employed within QQSPR development [11,14,15], therefore, the study of
generalized scalar products may result useful within higher order QQSPR procedures.

In order to attain such goals, this study will start with some introductory remarks
about the mathematical treatment of vector semispaces and probability distributions.
Then, such theoretical manipulations will lead towards the possibility to transform
semispace scalar products into a modified form, which could be easily connected with
Euclidean norms. Generalization of this Euclidean framework into higher order norms
and the attached modified scalar products will follow. Some examples both analytical
and numerical will be discussed, closing the present work.

2 Vector semispaces and probability distributions
2.1 Vector semispaces

Due to the close relationship of vector semispaces with quantum molecular similarity
theoretical background [4-6,10,13], such mathematical structures have been previ-
ously defined and discussed along several papers [3,7,9].

For completion sake, a brief summary of a vector semispace definition follows.
Suppose some N-dimensional vector space' defined over the real field:> Vy (R); any
subset of vectors Vy (RT) C Vy(R), defined over the positive or non negative real
field is called a vector semispace [3,7,9] whenever it presents the usual properties of
a vector space, shortly:

Va, p € R* Ala), |b) € VN (RT) s ala) + BIb) € Vi (RT). M

Vector semispaces can be constructed from vector space elements and such con-

struction symbolized by so-called generating symbols [7], involving the definitions of
inward vector product and powers [9], that is:

Viz) € Vy(R) — G(I2) = [2) * [z) = [2)*H € Vy(R™). (2)

Complete vector sums [9] over the elements of vector semispaces produce the first
order Minkowski norm, see for example Ref. [19], of a given vector:

Viz) € Vv (RT) s {12)) = lll2)ll1 € RT 3

Thus, within finite dimensional spaces a complete vector sum corresponds to the
sum of all the elements of a given vector, but when functions are involved such an

1 The reader can consider that the discrete dimensional spaces employed here are vector or matrix spaces
and the infinite dimensional ones function spaces, unless the contrary is stated.

2 The same will be valid in case the complex field is chosen as the vector space background field. The real
field has been chosen in order to simplify the present development. In the practical computational cases the
real field is the usual background.
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operation transforms into an integral over the variable domain definition of the func-
tional space.

Vector semispaces can be ordered via shells [3,9]. A shell S(ux) of a vector semi-
space is a subset whose vectors possess the same first order Minkowski norm value:
I, that is:

ViIs) € S(w) C Vv (RT) 2 lIs) Il = {Is)) = “

The unit shell S(1) elements can originate every element of a given vector semi-
space, as the elements of any other semispace shell are just homothetic to the unit shell
elements:

Viu) € S(1) = Y € RT 2 |m) = plu) = S(w). %)

If a known set of positive definite scalars: A = {A;} € RT is convex, that means their
sum yields the unit, thatis: >, A; = 1. This property can be symbolized by using the
notation: K(A). Then, a linear combination of elements of any shell S(x) by means
of the set A can be called convex and belongs to the same shell:

D CRYAD ap =1 {Im)} C S(u) : Im) =D 2glmy) € S()  (6)
1 1

2.2 Probability distributions and the unit shell

The unit shell contains probability distributions in both discrete and infinite dimen-
sional vector semispaces. For instance, in function semispaces, the elements whose
complete sum is the unit and therefore belonging to the unit shell can be considered
probability distributions.

In order to illustrate the previous definitions and algebraic symbols, one can use
first order quantum density functions: p(r). One can write if this is the case:

Vp(r) € S(N) C Voo (RT) — (p) = /,O(r)dl‘ =N, N
D

being N the number of particles and D an appropriate integration domain. The so
called shape function o (r) belongs to the unit shell [3] and therefore can be associated
to a continuous probability distribution:

N7'p@r)=0@) e S(1) C Voo (RT) — /o(r)dr =1 ®)
D

Also, in column (or row) N-dimensional vector semispaces, one can associate every
vector of the unit shell with a given discrete probability distribution in the same manner
as in the infinite dimensional case, as:
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Via) = {as} € S(N) € Vy (RT) — Zaz ©)

then:

“a) = |z) e (1) c V (R) — ZZ]— N> ar=1 (10)
I

Hence, the elements of the vector |z) constitute a convex scalar set, which can be
associated to a set of discrete probabilities as: VI : 1 < z; <0.

3 Euclidean norms and scalar products in vector semispaces
3.1 Euclidean norms

As it has been explained, in vector semispaces the complete sum of any of its elements
yields the first order Minkowski norm of such a vector. However, for many purposes
it is interesting to consider how to connect in vector semispaces such a norm with
the usual Euclidean norms and scalar products, which can be described in Hilbert
and pre-Hilbert semispaces. The problem has been considered in relationship with
quantum similarity theory and practice [4,6,8, 10, 13] but recently similar procedures
have been described as the necessary theoretical background to study the probability
spaces associated to the study of vapor-liquid equilibrium [2].

In fact any member of any vector semispace can be associated to its square root in
such a way that the Minkowski norm of the original vector transforms into a Euclidian
norm. In function semispaces this is a trivial operation, as:

¥p € S(N) C Voo (RY) = 3p = /p A fp) = (plp) = (pP) =N. (1)

In finite dimensional vector semispaces a similar description can be conceived,
employing the inward square root definition of a vector [9]:

1

ia) = tar} € S € vy (R*) = 3p) =0’ = {pr = v} a2)

which can be associated to the norms:

(plp) = (Ipy+ 1) = (IP"@) = D pt =X a
I I

(la)). 13)

As a consequence, for any vector in a vector semispace one can describe an inward
square root vector which possesses the Euclidian norm coincident with the Minkowski
norm of the original vector, which for notation sake can be also written as:

lNa)llt = (la)) (14)
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while the square root of the scalar product of the vector by itself can be noted as:

1P ll2 = V/(plp). 15)

Now, it is the right moment to consider that there is some nomenclature confusion
about the Euclidian norm as defined here and its square root, usually also referred as
vector length. In order to denote the difference between both elements, which in our
case will be coincident with the symbols described above. One can proceed as follows:

)2 = V(plp) = V{a)) = VIlla)ll1, (16)

However, by context, in the present study there cannot appear any doubt about
which operation is associated to the word norm.

3.2 Scalar products and square root scalar products

Although in the definition of the previous norms there is no confusion except that it
may be named norm both a scalar product and its square root, it appears to be some
interesting point to discuss, concerning the definition of the scalar product in a way
that there is some positive definition coherence with the norm itself, not only semantic
but also of mathematical nature.

In order to visualize the procedure permitting the construction of such coherent
scalar product definition, suppose one obtains two inward square root vectors from
some vector pair belonging to a vector semispace:

la), |b) € Vy (RY) — [p) = |a>*[7}, lq) = |b>*[ﬂ. (17)

Then, from these new vectors one can construct the scalar product of the inward
square root vectors:

(pla) =D pigi = _arb (18)
1 1

So, it is obvious that when: |a) = |b) — |p) = |q), so the equation above leads
to:

(1P I)* = (plp) = (la)) = lla)]:. 19)

However, Eq. (19) does not reproduce Eq.(16), which involves the square root of
the Euclidean norms.

In order to arrive to this previous computational situation, there is needed to define
some scalar product defined anew as a square root, that is:

(plg) =V{pla) = |D prar (20)
1
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in this way, when both involved vectors are coincident, one can write:

(ploy= D p2=1lp)la (1)
1

In fact, any Euclidian metric has to possess the above property; otherwise the tri-
angular inequality is not fulfilled [1,18]. Therefore, it seems that the scalar product
definition in order to be coherent with a Euclidian metric is the one given in Eq. (16),
that is: the square root of the usual scalar product in pre-Hilbert and Hilbert spaces.

When dealing with infinite dimensional vector semispaces, like the ones shown
in Eq.(7), one can write the following equations, which follow the same previous
definitions and considerations developed in finite dimensional spaces:

1

2

Vpa(r), pp(r) € Voo (RT) = (palpp) = /,OA(I‘),OB(I‘)dl‘
D

= V(pa(®pp(®) =/ (palpg) (22)

In case the pair of elements involved into the scalar product (22) is a couple of
quantum density functions, as a consequence the scalar product: (p4lpp) = (papB)
is the well known overlap quantum similarity measure integral [4,6]. Certainly, when
considering quantum self-similarity measures, that is: the scalar product involving a
unique density function, like (p4|pa) = ( pf\); then one will have:

=

Vpa(r) € Voo (RY) = (palpa) = /,OA(I‘),OA(I‘)dr
D

Vipalpa) =/ (p3) = llpal  (23)

Such a general definition, which is coherent with the Euclidian norm of a scalar
product, involving semispaces of any dimension, can be called square root scalar
product.

A remark is worthwhile here. In the infinite dimensional case, the square root of
a given continuous probability distribution is, like when one considers the quantum
shape functions case, quite difficult to obtain analytically. In some cases, where just
exponential functions are used as probability distributions, see for example Ref. [2],
the possibility to obtain the functions: p(r) = /p(r) is obviously trivial.

This kind of manipulations shall be relevant in the background of the development
of the application of molecular similarity to QSPR, see for example [10,11,13-15].
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4 Higher order scalar products and norms
4.1 Finite dimensional case

The scalar products can be written using the inward vector product as defined in Eq. (2),
that is: Eq. (20) can be expressed as:

(rlg) = V{plg) = VIp) *q)). (24)

Following this notation, it will be quite easy to define a third order scalar product
involving three vectors as follows:

(plgls) = JAIp)*lq)ls)) = /Z piqist — (plplp)
1

= Jp)=Ip)*p) = §>_p} (25)
1

although such a definition does not provide a third order norm, but a pseudonorm
[21], as some scalar products involving the same vector can be negative or null when
belonging to a real vector space:

Alp) € Vn(R) : (plplp) =0 A |p) # 10).

A way to avoid this drawback can consist into using the following redefinition, when:
Ip) =lq) = Is):

(plplp) = JIp)<Ip)*lIp)) :\s/Zp%um =\a/2|p1|3 =lp)ls  (26)
1 1

with the inward absolute value of a given vector given by:

)l = {lprl} 27

When the vectors belong to a vector semispace such redefinition becomes irrelevant
and the third order norm can be written as in Eq. (25):

Vip) € Vv (RY) < [1p)ls = (plplp) = /1) = > pi. (28)
1
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These results can be used to construct within vector semispaces higher order
products, which can be made coherent with higher order norms:

V{lpa)la = 1,0} C Vv (RT) - (Ip)lIp2)l -+ 1pv))

) e

= Vp0)*lpa) - *py)) = °

in such a way that the higher order norms can be written as:

1P = {1y ) = > py. (30)
1

Such definitions can be employed in vector spaces in general if care is taken of odd
higher order scalar products whenever they are to be coherent with the norm of the
same odd order. In these cases, a similar redefinition as in the third order case shown
in Eq.(26), has to be done in order to avoid the definition of a pseudonorm. That is:
in real vector spaces, Eq. (30) is a norm whenever v = 2k, but shall be modified when
dealing with odd order norms, where v = 2k + 1, using:

v="2k+1:[Ip)lle = /{Ip)C¥xlp)l) = ¥

Another remark, which shall be certainly now disclosed in order to warn the possi-
ble users of the previously discussed generalized norms and scalar products, is about
the rotational invariance of the whole set of both generalized mathematical structures.

In the second order Euclidean case, rotational invariance is always fulfilled for both
scalar products and norms, as it is well known and moreover this constitutes the basis
of the usual geometry, see for example Ref. [18]. However, as defined here, the overall
order structures which are different from the second order one are not rotationally
invariant. This is an issue not very much commented, excepting in some exceptional
cases, see for instance Sneath and Sokal [19], who describe quite clearly the problem
within a discussion on generalized norms.

4.2 Odd generalized scalar products over vector spaces

The norm coherent description of generalized scalar products within vector spaces can
be particularly described in third order as any of the three possible products involving
three vectors: {|a), |b), |c)} € VN (R):

(lla)x[b)x[c)) v (la)x[|b)[x[c}) V (la)x[b)x||c)])
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thus, as no vector can be taken in principle over the other ones, the third order scalar
products can be defined as an average:

{alble) = 37" (lla) %Ib)x[c)) + (la)+|1b)|xlc)) + (la)x[b)*||c)])

which can be easily generalized to any order and to coherent root scalar products.
Such an algorithm is irrelevant for even order generalized scalar products and when
the scalar products are operated with elements belonging to vector semispaces.

4.3 Infinite dimensional case

In the infinite dimensional vector semispaces the coherent definition of higher norm
scalar products can be also easily performed. For example, in the three order case
and if the vectors are quantum density functions, a triple density [10,13,5] quantum
similarity integral appears:

(papBpPC) = / pa(®)pp(r)pc(r)dr. (3D
D

Then, the norm coherent scalar product can be defined as the cubic root, which will
easily yield the appropriate third order norm:

(palpslpc) = V{papspc) = (palpalpa) = V{papapa) = llpalls.  (32)

In the case of generalized products and norms of density functions there appear
no direct rotational problems, except these originating in the changes of the functions
themselves due to the rotations. When molecular density functions are studied under
these mathematical structures and the framework of Born-Oppenheimer approxima-
tion is chosen, the real problem in this circumstance can be associated to the superpo-
sition of the atomic molecular frozen structures of the involved molecules, although
in generalized norms there this superposition problem does not appear whenever the
involved functions have the same set of nuclear coordinates. Other problems, related
with the previously mentioned one appear, but the manner to overcome them has been
recently discussed in Ref. [12].

5 Some analytical examples concerning Gaussian functions
It is worthwhile to present now some practical simple examples in order to illustrate

the feasibility of the generalized scalar products and norms. Gaussian functions will
be used for this purpose.
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To start with these examples, suppose known three Gaussian functions of the same
variable with different exponents and centered at three different points, such as:

8a(x) = exp (—a(x — a)z) ; gp(x) = exp (—ﬁ(x ~ b)z) ;

gc(x) = exp (—y(x — C)Z)

their triple scalar product can be defined, see for example [5], as the involved integral
is well known [16]:

+00

(o020 = [ exp (= [atx = @4 Bl = b7 4y 05 = o] )x
3

/ exp (= [ (@ + B + )22

—00
—2(aa + b+ yo)x + (aa® + ,3b2 + ycz)]) dx
+00

/ exp (— [Ax2 —2Bx? + C])dx = \/gexp (le_{fAC)

—0o0

(33)

So, even within infinite dimensional vector spaces, triple or multiple scalar products
can be well defined. In this case one can without problem obtain the cubic root of the
result of the integral (33) in order to have the norm coherent scalar product structure.

In order to obtain a general framework for Gaussian functions, then if instead of
a three Gaussian product one defines another with an indefinite number of functions,
N say, of them, there is just need to construct the N-dimensional vectors bearing the
exponents and the function variable origin shifts respectively:

lo) = {as|I =1, N} Ala) = {a7|] =1, N}
These vectors define the Gaussian function set:
VI () = exp (—ar(r — ap?),

so one can construct the N function product:

G(x) = l_N[ g1(x) = exp (— [Ax2 _2Bx + C]) (34)
I=1

constituting a simple structure which contains the formerly discussed triple Gaussian
product integral as a particular case.
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Now and before the three constants appearing in Eq. (34) can be defined employing
the following inward vector products and the complete sum symbols:

A= (la)); B = (ala) = (|la)|a)); C = (lo)xla}sla)) = (jo)xla)*!),

where it is interesting to see how the third term in the exponent corresponds to a triple
scalar product, the second to a classical scalar product and the first to a Minkowski
norm as the Gaussian exponents are taken positive definite as usual.

Therefore, the result of a multiple scalar product can be obtained with the previous
integral value, appearing in the last equality of Eq. (33), submitted to the appropriate
N-th root.

It is trivial but illustrative to discuss some particular instances of the final equation.
For example, when a set of Gaussian functions with the same exponent but located to
several different points are considered, then it will hold:

lo) = afl) A1) = {1y = 1|l =1, N} Ala) = {as|l =1, N},

where the unity vector: |1) = {1; = 1} has been employed. Hence, in this case one
will have:

A=Nua

B = a(|l)+la)) = a(la)) = @ Y a; — B = o*(ja)al)
1

C= a<|l)*|a)*[2]> p <|a)*[2]> —a>a}
1

and from this result the value of the multiple scalar product integral can be written as:

— N {la)*2]
(G)=,/%exp(a(|a)(al) N (|a> >)

Another possible case to be now considered is a set of different Gaussian functions
centered at the same site, and then one will have:

o) ={asll =1, N} Ala) = all) A1) ={1; = 1[I =1, N},
which will produce the constants:

A = (|a))
B = a(|a)*|1)) = a(la)) = aA — B> = (aA)?
C=d <|a)*|l)*[2]> = a2(ja)) = d2A
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and thus the general complete sum scalar product becomes, except by simplicity sake
for the lack of the corresponding order root:

(G) = Eexp ((A — 1)a2) .

Of course, when the common center of the Gaussian set is the origin, that is: a = 0,
then one will obtain the well known result:

G_T[
(G =/~

The generalized N-th order norm of a Gaussian function centered somewhere, in
a say, produces:

A=aN
B = aa(|1)#|1)) = aa(]1)) = aaN — B> = (aaN)?
C= a2a<|l)*|l)*[2]> = a2a(|1)) = a®aN

which permits to write the generalized N-th order norm integral, prior to compute
over it the N-th order root, as the expected complete sum result:

T azazNz—azaN(aN) T T\ 2w
(G) = [ exp = == =>1GIn=(=%)
aN aN aN aN

Thus, at least concerning Gaussian functions there is a well-defined generalized
N-th order scalar product definition with coherently attached norms.

Such a possibility is quite interesting because of the widespread use of Gaussian
basis sets in quantum chemistry, which in turn directs towards the way concerning
which kind of integrals one could expect to face, when similarity measures of any
order are envisaged to be computed.

6 Numerical tests involving Hilbert matrices

Having studied a continuous case, there will be also illustrative to see the behavior of
generalized root products in discrete cases. The so called Hilbert matrix [17] consti-
tutes a well known metric matrix, which can be associated to the powers of a variable
and to the integrals connected to the scalar products:

1
H? — 1 h < I+J / 147 4y —
{hij} = hiy = X|X e =g

0
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besides the matrix properties like positive definiteness are depending of the machine
precision. The eigenvalues of the Hilbert matrix of different dimensions are easy to
compute and as their elements are scalar products, it is not so difficult to generalize
this to higher order products too.

For instance, the N-th order Hilbert matrix can be computed as:

HM

{(hDli= 1, Ly....IN)} = heay
1

N N
2 I 2 I il
= { xr=! =/x*”:1 dx = 1+le
0 p=1

—1

the elements of it acting as generalized scalar products. Obtaining from here the root
products is elementary.

It is also easy to build up a program, where the eigenvalues of higher order Hil-
bert square submatrices can be computed. It is well known too that Hilbert matrices
are necessarily positive definite, but also they are quite numerically unstable, even
using high order precision arithmetic. The higher order submatrices do not escape this
ill-behaved structure and even within a quadruple precision Jacobi diagonalization rou-
tine, the lowest eigenvalues of not so big dimension Hilbert matrices transform into
non-positive definite matrices and one or more quite small eigenvalues become nega-
tive. However, for these dimensions which produce positive definite Hilbert matrices,
the lesser eigenvalues become numbers which lie almost nearby within the machine
precision, so Hilbert matrix determinants become even less significant and from the
practical computational point of view null or meaningless.

For example, using the fourth order Hilbert matrix with the elements submitted to
the fourth root, all the (7 x 7) submatrices appear to have determinants in the range:
[10_36; 10_49] but none negative. However, raising the order one unit, then some of the
(8 x 8) submatrices already possess some negative eigenvalues and the determinant
range, without assuming the negative values, is: [10~%7; 10_61].

7 Conclusions

An overview of the scalar product concept generalization and the corresponding norm
coherent definition has been presented. The mathematical framework will be useful
in the theory and practice of quantum similarity and its application to quantum QSPR
procedures.
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